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ABSTRACT 

It is shown that a noetherian algebra R with finite Gelfand-Kirillov di- 

mension and right primary decomposition can be embedded in an artinian 

ring S, and that S is fiat as a left R-module if and only if all right associ- 

ated primes are minimal. If R is irreducible then such a flat embedding is 

possible if and only if R has an artinian quotient ring. Also, the existence 

of a left flat embedding in an artinian ring allows an explicit description 

of the prime middle annihilators of R. 

1. I n t r o d u c t i o n  

The question whether all (right and left) noetherian rings can be embedded in 

artinian rings has only recently been answered in the negative. In [5], Dean 

and Stafford have shown that a certain factor ring of U(s[(2, C)), the enveloping 

algebra of the smallest simple complex Lie algebra, cannot be so embedded. In 

a subsequent paper [4], Dean showed that indeed the enveloping algebra of a 

complex Lie algebra g has a nonembeddable factor ring if and only if ~ is not 

solvable. Since by a result of Brown and Lenagan [2], a complex Lie algebra g 

is solvable if and only if all factor rings of U(g) have a primary decomposition, 

this clarifies, at least for the enveloping algebras, the connection between primary 

decomposition and embeddability in artinian rings. We show that any noetherian 

algebra with finite Gelfand-Kirillov dimension that has a primary decomposition 
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can be embedded in an artinian ring. The base for this result and others presented 

in this paper is a remarkable theorem due to Schofield [18], which asserts that 

an algebra R over a field k is embeddable in an artinian ring if and only if R 

admits a faithful Sylvester rank function A. The non-embeddability of Dean's 

examples is established by showing that no such function exists for the rings in 

question. On the positive side, Blair and Small [1] have shown that the function 

A(M) = p(M)/p(RR) for finitely generated right modules over a right noetherian 

k-algebra R, where p denotes the reduced rank, is a Sylvester rank function that 

is faithful whenever the ideal K = {a E R [ p(aR) = 0) is zero. In this case, R 

embeds in a simple artinian ring S such that nS  is flat. Starting from this, we 

show that the existence of such a flat embedding is actually equivalent to K =- 0, 

and that,  for a noetherian k-algebra R, this is the case if and only if Ass(Rn) 

consists of minimal primes, so that the existence of a flat artinian embedding in 

the commutative case is equivalent to the existence of an artinian quotient ring. 

Furthermore, a noetherian k-algebra R has a left flat artinian embedding if and 

only if R is a finite subdirect product of irreducible right Pi-primary rings Ri such 

that each Pi is a minimal prime ideal of R. If R has also finite Gelfand-Kirillov 

dimension, then each of the components Ri has in fact an artinian quotient ring 

Q(Ri), although R may fail to have one, and indeed, the embedding of R into 

the artinian ring (~ Q(R~) need not be the flat embedding that exists for R. 

This paper ends with an explicit description of the set of prime middle annihi- 

lators of a noetherian k-algebra with finite Gelfand-Kirillov dimension that has 

a left flat embedding in an artinian ring. It turns out that this set coincides with 

the set of all those prime ideals that are minimal over a left annihilator ideal. 

2. Definitions, Notations, and Some Technical Results 

Throughout, k denotes a field, and R is a k-algebra, occasionally just a ring 

with unit element, modules are generally unitary right R-modules. Most of our 

notation is standard, what follows is a list of the most frequently used terms. For 
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details, the reader is referred to the book by McConnell and Robson [17]. 
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minspec(R) = 

N = N(R)  = 

r ( x )  = 

= 

' e ( x )  = 

set of minimal prime ideals of R. 

prime radical of R = N { P [ P  E minspec(R)}. 

right annihilator of the set X. 

left annihilator of the set X. 

set of elements that are left regular modulo the ideal I 

= { c E R l x c E I  ~ x  EI} .  

g ' ( I )  = set of elements that are right regular modulo the ideal I.  

C(I) = 'C(X) n C'(I). 

Z ( M )  = singular submodule of the module M 

= {m E M Ir(m) essential in RM. 

p(M) = reduced rank of the module M. 

A prime ideal P of R is assoc ia ted  with the right R-module M if there exists 

a nonzero submodule N of M such that P = r (N' )  for all 0 ~ N'  C N. The 

module M is P - p r l m a r y  if P is its only associated prime. 

Ass(M) = set of all primes associated with the module M. 

An ideal I of R and the ring R / I  are r ight  P - p r i m a r y  if R / I ,  considered as a 

right module, is P-primary. The ring R has r ight  p r i m a r y  d e c o m p o s i t i o n  if 

there exist finitely many right primary ideals intersecting in zero. An ideal M of 

R is a midd le  a n n i h i l a t o r  if there exist ideals A and B with A B  ~ 0 such that  

M = Mid(A, B) = {z E R ] a z B  = 0}. 

A Sy lves te r  m o d u l e  r a n k  func t ion ,  more briefly a Sy lves te r  r a n k  func-  

t ion,  on the ring R is a function ,k from finitely presented right R-modules to 

nonnegative numbers in (1/n)Z for some fixed positive integer n, such that  

(i) A(R) = 1. 

(ii) A(M @ N) = A(M) + ~(N). 

(iii) If L --* M ~ N --, 0 is an exact sequence of finitely presented right 

R-modules, then A(N) < A(M) < ~(L) + A(N). 

If (ii) and (iii) are replaced by the stronger condition that A(M) = A(L) + A(N) 

whenever 0 --* L --* M --* N --* 0 is a short exact sequence of finitely generated 
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right R-modules, then the Sylvester module rank function A is called exact,  and 

it is said to be faithful if A(R/A) < 1 for each right ideal A # 0 of R. 

2.1 THEOREM (Schofield [18]): A Sylvester rank function A on a k-algebra R 

taking values in (1/n)Z arises from homomorphism f : R ---, M,,(D) = S, where 

D is a divisionring, with ker(f) = {a 6 R[A(R/aR)  = 1}. The simple artinian 

ring S is flat as a left R-module if  and only if  A h exact. 

Since a right artinian k-algebra R can be embedded in a simple artinian ring S 

such that aS  is flat, using the exact Sylvester rank function on R that arises from 

the composition length, it is clear that whenever a k-algebra R is embeddable 

in an artinian k-algebra S such that RS is flat, then one may as well assume 

that S is simple artinian. We say, for short, that R has a left flat ar t inlan 

embedding.  

Frequent use is made of the Gelfand-Kir i l lov dimension,  or GK-dimen-  

sion for short, of k-algebras and their modules. Whenever one has to distinguish 

between the right and left hand side, we indicate this by a subscript. Thus, 

for the S-R-bimodule M, GKs(M) and GK(M)a denote its GK-dimensions as a 

left S-module and right R-module, respectively. For basic properties concerning 

GK-dimension, we refer to [13] or Chapter 8 of [17]. Note that we do not assume 

GK-dimension to be exact, that is, we do not take for granted that GK(M) = 

max{GK(S), GK(M/S)} whenever S is a submodule of M. We also do not 

assume that GK(R) = GK(R/N). 

Definition: The k-algebra R is right (left) GK-homogeneous  if GK(A) = 

GK(R) for each right (left) ideal A # 0, it is right (left) weakly  GK-homoge- 

neous if GK(A) > GK(R/N) for each right (left) ideal A # 0. 

2.2 LEMMA: The following are equivalent for the right noetherian k-algebra R. 

(1) R is right weakly GK-homogeneous and GK(R) = GK(R/N). 

(2) R is right GK-homogeneous. 

Proof.." If R is right GK-homogeneous, then 

GK(R) = GK(~(N))a < GK(R/N) < GK(R). 

The rest is trivial. 
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2.3 PROPOSITION: Let R be a right noetherian k-algebra. Then 

(a) GK(R/N) < GK(E) for every essential right i dea /E  of R. 

(b) GK(R/N) = GK(R/P) for some prime ideal P e Ass(RR). 

Proof'. (a) Note that, since R is right noetherian, we have that GK(RE)R = 

GK(E),  as RE is a finite sum of right ideals of the form rE,  r E R, each being a 

homomorphic image of ER. Note also that RE is finitely generated on the fight, 

so that GK(R/g(RE)) = GKR(RE)  _< GK(RE)R by [13, Lemma 5.3]. Since RE 

is an essential right ideal, g(RE) C_ Z(RR) C_ N, so GK(R/N) < GK(R/g(RE)). 

(b) Let E = g(D), where D = N{P [ P • Ass(RR)}, so E is an essential right 

ideal. Since E is a right R/D-module, and since N _C D, it follows from (a) that 

GK(R/N) <_ GK(E)R _< GK(R/D)  < GK(R/N), 

so GK(R/N) = max{GK(R/P) I P e Ass(RR)}. 

Note that if R is a right noetherian k-algebra with GK(R) < o0, then any 

prime ideal P with GK(R/N)  = G K ( R / P )  must be a minimal prime. Thus we 

have 

2.4 COROLLARY: Let R be a right noetherian, right P-primary k-algebra with 

GK(R) < co. Then P is a minimal prime ideal. 

Note that this is no longer true in general when R has infinite GK-dimension; 

see Example 3.6 below. 

Several of our results are true for both noetherian rings and right noetherian 

right fully bounded rings, right FBN-rings for short. It turns out that what is 

used in the proofs is that every right ideal A is finitely annihilated, that is, 

r(A) = Nin=a r(ai) for a finite subset {al,aa,... ,an} C A. 

3. Noetherian Algebras with Left Flat Artinian Embeddings 

In [1], Blair and Small showed that a right noetherian right Krull-homogeneous 

k-algebra R embeds in a simple artinian ring S such that nS  is flat. This carries 

over to the weakly GK-homogeneous case, virtually the same proof can be used, 

although we present a shorter one. 

3.1 THEOREM: Let R be a right noetherian right weakly GK-homogeneous K- 

algebra with GK( R) < oo. Then R can be embedded in a simple artinian ring S 

such that RS is fiat. 
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Proof." We show that the ideal K = {a E R [ p(an) = 0} is zero, the claim 

follows from this by Theorem 1 of [1]. Assume that K # 0. Since £(N) is an 

essential right ideal, gNU(N) # O, so let 0 ¢ y E KNt(N), and let c 6 r(y)NC(g). 

Then r(y) D_ cR + N, so 

GK(yR) = GK(R/r(y)) <_ GK(R/cR + N) < GK(R/N), 

contradicting the weak GK-homogeneity of R. | 

It follows from this result that a right noetherian right weakly GK-homoge- 

neous k-algebra with finite GK-dimension satisfies the descending chain condition 

for right annihilators. The following proposition shows that in the right primary 

case the converse is also true. 

3.2 PROPOSITION: The following are equivalent for a right noetherian right pri- 

mary k-Mgebra with finite GK-dimension. 

(I) Each right ideM of R is finitely annihilated. 

(2) R is right weakly GK-homogeneous. 

(3) R satisfies the descending chain condition for right annihilators. 

Proof: (1) ~ (2): Let Ass(Rn) = P. By Proposition 2.3(b), GK(R/N) = 

GK(R/P). Let A be a nonzero right ideal, and let U ¢ 0 be a uniform right 

ideal, U C_ A, such that r(U) = P. Since U is finitely annihilated, U is not 

C(P)-torsion, so U must be torsionfree and hence isomorphic to a uniform right 

ideal of R/P. Consequently, GK(A) >_ GK(U)= GK(R/P)= GK(R/N). 

(2) --* (3): This is clear since R embeds in an artinian ring by Theorem 3.1. 

(3) ~ (1): This is trivial. | 

Since a right FBN-ring has right primary decomposition by a result of Gordon 

[8, Corollary 2.4], the following corollary generalizes Theorem 4 of Blair and 

Small [1] and answers, at least for right FBN-algebras with finite GK-dimension, 

their question posed after the proof of that result. 

3.3 COROLLARY: A right noetherian, right fully bounded k-algebra with finite 

GK-dimension can be embedded in an artinian ring. 

In [15, Corollary 4.2], Lenagan has shown that any factor ring of the envelop- 

ing algebra U(g) of a finite dimensional solvable complex Lie algebra g can be 

embedded in an artinian ring. Since any such ring has a primary decomposition 

by [2], the following corollary generalizes this result. 
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3.4 COROLLARY: Let R be a noetherian k-algebra with ~nite GK-dimension. I f  

R has right primary decomposition, then R can be embedded in an artinian ring. 

Next, we show that for a right noetherian k-algebra whose right ideals are 

finitely annihilated, Theorem 1 of Blair and Small [1] has a converse. 

3.5 THEOREM: Let R be a right noetherian ring whose right ideals are finitely 

annihilated. Then the following are equivalent. 

(1) Ass(Ra) C_ minspec(R). 

(2) There exist irreducible right Pj-primary ideals Ij, j = 1 , . . . ,  n with 

/1 f3/2 N . . .  f3 I,, = 0 and {Px, . . . ,P , ,}  _C minspec (R). 

(3) K = {a E R i p ( a n )  = 0} = O. 

If, furthermore, R is a k-algebra, then the above are equivalent to 

(4) R embeds in a simple artinian ring S such that RS is fiat. 

Proofi (1) ~ (2): Pick irreducible ideals I 1 , . . . ,  I,, such that their intersection 

is zero yet Njgl  Ii f~ x i  ~ 0 whenever Xi is an ideal that properly contains Ii. 

This is possible in any ring with ascending chain condition for ideals. Now let 

Pi / I i  be the unique maximal right associated prime of R/ I i ,  j = 1 , . . . ,  n. Then 

X j P  i C_ Ij for some ideal X i ~ Ij, so X i M Ni#j Ii ~ 0 and (Xj  N Ni#j Ii)Pi = O. 

Thus Pj C_ r(Xj  n N i , j  Ii) C_ P for some P E Ass(RR). Since P is assumed to 

be minimal, Pj = P follows. The rest is now clear. 

(2) -* (3): Assume that K ¢ 0, so H = K VI g(N) ¢ 0. Since H is finitely 

annihilated, Hc = 0 for some c E C(N). Now, H is not contained in each 

I j , j  = 1, . . .  ,n, so H ~ 11, say. Since c E r(H + I1/I1) C_ PI = Ass(R/Ix) ,  we 

get a contradiction, since P1 is assumed to be a minimal prime. 

(3) ~ (1): Let P E Ass(RR). If P were not minimal, then there would be an 

element c • P N C(N). Now g(P)c = 0, so ~(P) C_ g = 0, and P would not be 

right associated with R. 

Let now R be a k-algebra. Then (4) follows from (3) by Theorem 1 of [1]. 

Conversely, assume that there is an embedding f : R ~ S = M,,(D), D a 

division ring, such that R(S) is fiat. The corresponding Sylvester rank function A 

from finitely generated right R-modules into (1/n)Z is exact, so nA is an additive 

rank function in the sense of [12]. Now let x • K,  so p(xR) = 0. By [12, Lemma 

1.3], nA(xR) = 0, so A(zR) = 0. Thus A(R/xR)  = A(R) = 1, so x • ker(f) = 0. 

Hence K = 0, as claimed. I 
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Remark: The implications (1) --* (2) and (3) --~ (1) hold for any right noetherian 

ring. Note also that (3) and (4) are equivalent if R is merely a right noetherian k- 

algebra. Thus, a right noetherian k-algebra whose right associated primes are not 

all minimal cannot possibly have a left flat artinian embedding. In this context 

it is perhaps worthwhile recalling the following example due to Blair and Small 

[1], as it illustrates the preceding results. In order to make this note reasonably 

self-contained, we present the construction. 

3.6 Example: [1, p.17] Let A = R[x](,2+I), the ring of polynomials in one vari- 

able over the reals localized at the prime ideal generated by x 2 + 1. Then A is a 

commutative, local, principal ideal domain with maximal ideal 

P = ( z  2 + 1)R[x](~2+l),  

and the embedding of R[x] into C ~- R[z]/(x: + 1) given by Lesieur [16, p.116] 
can be adapted to yield an embedding i : A ~ A / P  ~_ C. If ¢ : A ~ A / P  

denotes the canonical epimorphism, then the ring 

with entry by entry addition and multiplication defined by 

is a right noetherian (but not left noetherian) subdirectly irreducible Q-algebra 

with right ideals 
o o  

R D Q D Q  2 D . . .  D ~ Q i = N  ~O, 
i=1  

where 

There is an embedding f of R in the artinian ring M2(A/P), the map f being 

given by 
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However, Ass(RR) = Q, and Q is not a minimal prime, so by Theorem 3.5 no 

left flat embedding of R into a simple artinian ring exists. The nature of the 

embedding of A in A/P (cf. [16] for details) shows that as a Q-algebra R has 

infinite GK-dimension. Note that N is the unique minimal right ideal and that 

g(N) = N, so GK(A) >_ GK(N)R _> GKR(N) = GK(R/i(N)) for any nonzero 

right ideal A, hence R is right weakly GK-homogeneous. Thus the example shows 

that Theorem 3.1 need not be true when GK(R) is not finite. 

4. Artinian Quotient Rings 

By Theorem 3.1, a right noetherian right weakly GK-homogeneous k-algebra 

with finite GK-dimension has a left flat artinian embedding. It turns out that 

if the algebra is left noetherian as well then this embedding can be obtained 

without the use of Schofield's Theorem, since in this case there is an artinian 

quotient ring (see Corollary 4.2 below). This generalizes a result due to Joseph 

and Small [9], who have shown that any GK-homogeneous homomorphic image of 

the enveloping algebra of a finite dimensional Lie algebra has an artinian quotient 

ring. Note, however, that this need no longer be true if the algebra is merely 

right noetherian, even when it is a PI-algebra. Blair and Small [1] point out that 

the ring 

is a right noetherian (but not left noetherian) affine PI-algebra with OK(R) = 1. 

It is irreducible, hence, being right fully bounded, it is right primary and thus 

right weakly GK-homogeneous by Proposition 3.2. However, 

yet 

(0 

s o  

and R does not have a right artinian right quotient ring by Small's criterion [19]. 

Note that a right noetherian, left weakly GK-homogeneous k-algebra R is also 

right weakly GK-homogeneous. For if A is a nonzero right ideal of R, then it 
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follows from [13, Lemma 5.3] that 

GK(R/N) <_ GKn(RA) <_ GK(RA)R = GK(A). 

Thus, in a noetherian algebra one does not have to distinguish between right 

or left weakly GK-homogeneous. Note, however, that the example above, while 

right weakly GK-homogeneous, is not left weakly GK-homogeneous. For the 

prime radical 

has left annihilator 

g(x) 
f(x),9(,) e 

so that  R/~(N) ~_ k, whereas R/N ~- k[x], and consequently 

GKn(N)  = GK(R/e(N)) = GK(k) = 0 < 1 = GK(k[x]) = GK(R/N). 

Note also that  in this example 

:(x)/ # 0 , 

so the converse of the following result is not true in general. See, however, 

Theorem 4.3. 

4.1 THEOREM: Let R be a right noetherian k-algebra with finite GK-dimension. 
If R is left wealdy GK-homogeneous, then C(N) C_ 'C(O). 

Proof: Let c e C(N) and assume that xc = 0 for some x ~ 0, so x • £(N k+l) \ 

e(N k) for some integer k > 0. Since the elements of C(N) satisfy the right Ore 

condition modulo N, the right R/N-module I(N k+l)/£(N k) contains a nonzero 

C(N)-torsion submodule Z/i(Nk). For any z • Z / i (N k) there exists d 6 C(N) 

such that z(dR + N) = O, so 

GK(zR) = GK(R/r(z)) <_ GK(R/dR + N) < GK(R/N). 

Since Z/e(N~)) is finitely generated on the right, it follows that GK(R/N) > 

GK(Z/g.(gk))n. However, since Z/e(N k) is a bimodule, it follows from [13, 

Lemma 5.3] that 

GK(R/N) > GKn(Z/e(Nk)) = Gg(R/e(Z/e.(Yk))) 

= GK(R/e(ZNk)) = GKR(ZN k) >__ GK(R/N), 

which gives a contradiction. | 
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4.2 COROLLARY: A noetherian weakly GK-homogeneous k-algebra R for which 

GK(R)  < oo has an artinian quotient ring. 

Proof'. Apply Theorem 4.1 on both sides to get C(N) C_ 'C(0) N C'(0) -- C(0), 

hence the result by Small's [19] regularity condition. We offer an alternate proof, 

based on the fact [10, Theorem 2] that a noetherian ring has a artinian quotient 

ring if and only if its prime middle annihilators are minimal primes. Let M -- 

Mid(A, B), AB  7L 0 be a prime middle annihilator, and assume that M is not a 

minimal prime, so GK(R/M)  < GK(R/N) .  Then, using Lemma 5.3 and Cor. 

5.4 of [13], 

GK(R/N)  > GK(R/M)  = GK(R/ i (B / r (A) ) )  = GKR(B/r(A))  

= GK(B/r(A))R = GK(R(r(B/r (A)) )  = GK(R/r (AB))  

= GK(AB)R > GK(R/N) ,  

a contradiction. | 

We have seen above that for a noetherian algebra of finite GK-dimension var- 

ious conditions imply the existence of a left fiat artinian embedding. The next 

result shows that if the algebra has a unique maximal right associated prime, so 

in particular if it is irreducible, then all these are equivalent. 

4.3 THEOREM: Let R be a noetherian k-algebra with GK(R) < 0% and assume 

that Ass(RR) has a unique maximal dement. Then the following are equivalent. 

(1) R is right primary. 

(2) R is weakly GK-homogeneous. 

(3) R has an artinian quotient ring. 

(4) C(N) C_ 'C(O). 

(5) g = {a E R [ p(aR) = 0} = 0. 

(6) R embeds in a simple artinian ring S such that RS is flat. 

Proof." (1) ~ (2): This is proved in Proposition 3.2. 

(2) -~ (3): Corollary 4.2. 

(3) - ,  (4): This follows since C(N) = C(O) by Small [19]. 

(4) ~ (5): Since the elements of C(N) are left regular by hypothesis, p(xR) > 0 

for any nonzero element x, so K = 0. 

(5) --~ (6): Theorem 3.5. 
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(6) --* (1): By Theorem 3.5, Ass(RR) consists of minimal primes. Since R is 

assumed to have a unique maximal right associated prime, P say, it follows that 

Ass(RR) = P. | 

Remark: If R is an irreducible noetherian k-algebra of finite GK-dimension, 

then the following can be added to the above list. 

(1 ~) R is left primary. 

(4') c ( g )  C. C'(0). 

(5') K '  = {a • .Rip(Re ) = 0} = 0. 

(6 I) R embeds in a simple artinian ring T such that TR is flat. 

Theorem 3.5 shows that a noetherian k-algebra R that has a left flat artinian 

embedding admits a rather special primary decomposition. If GK(R) < oo, then 

each of the primary components R/Ij,j  = 1 , . . . ,  n, has an artinian quotient ring 

Q(R/Ij) by Theorem 4.3. Thus we have an embedding of R in the artinian ring 
n T = ~i=1 Q(R/Ii)" The following example shows that although each Q(R/Ii) 

is flat as a left R/Ii-module , RT need not be flat, so the above embedding is not 

the left flat artinian one we know exists also. The example also shows that  a 

noetherian PI-algebra R with GK(R) = 1 may have a left flat embedding in an 

artinian ring, but no right flat such embedding need exist. 

4.4 Example: Let k be a field, k[x] the commutative polynomial ring in one 

variable x, and let M = k[xl/(x), viewed as a (k[x], k)-bimodule. The ring 

R = ( k[xlO M 

is a noetherian PI-algebra with GK(R) = 1. The minimal prime ideals are 

Setting 

N = P ~ n P 2 =  0 ' 

one sees that P3 = g(N), so P3, being a maximal ideal, is left associated with 

R. Since P3 is not a minimal prime, no right flat embedding of R in an artinian 

ring exists. On the other hand, P1 = v(P2), so Ass(P~)n = P1, since P1 is also 
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maximal. Also, P2 = r ( I ' )  for any right ideal 0 # I '  C_ I,  so Ass(I)R = P2. As 

I (9 P2 is an essential submodule of RR, it follows that Ass(RR) = {P1,P2} = 

minspec(R), so R has an embedding in an artinian ring S such that  RS is flat. 

Next, note that I N P2 = 0, and that both I and P2 are irreducible ideals. Now 

A s s ( R / I ) R  = PI, so R / I  has art artinian quotient ring by Theorem 4.3, in fact 

Q ( R / I )  = R / I ,  since 

is already artinian. As R/Pz  "~ k[x], Q(R/P2) ~ k(x). I f T  = Q ( R / I ) ~ Q ( R / P 2 )  

were flat as a left R-module, then Q ( R / I )  = R / I  would have to be a flat left 

R-module. By a well-known criterion for flatness (see, for example, [14, p.133]), 

it would follow that A N I = A I  for each right ideal A of R, so in particular 

I = P .  Since I is obviously not idempotent, this shows that RT is not flat. 

4.5 Example: Let again k be a field, and let 

R =  M k 
0 0 

where M = k[z]/(z), viewed as the appropriate bimodule or as a ring, depending 

on its position in the above "matrix" ring. It is easy to see that the minimal 

primes of R are the ideals 

P =  0 , Q =  M k , and S =  k . 
0 0 0 0 

Furthermore, Ass(RR) = {Q, S} and Ass(RR) = {P, S}, so that R has a left 

flat embedding into an artinian ring and also a right flat such embedding, by 

Theorem 3.5. However, R does not have an artinian quotient ring. To see this, 

note that the prime radical is 

N = P N Q N S =  0 M , 
0 0 

and that  

c = 1 E C(N), 
0 
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yet 

and 

(i ° r ( c )  = o o , 
0 0 

(o0 ) 
~(c )=  0 , 

0 

so  c ¢ c ' ( o ) ,  

so c ¢ 'c(0). 

5. Prime Middle Annihilators 

A noetherian ring that can be embedded in a right artinian ring has only finitely 

many prime middle annihilators, as has been shown by Dean [3]. Now, in a 

noetherian ring R the set of all prime ideals that are minimal over some left 

annihilator ideal is always finite by Cot.2.2 of [7], and it consists of middle anni- 

hilators. We proceed to show that for a noetherian k-algebra R with GK(R) < oo 

that has a left flat artinian embedding, the two sets coincide. Recall that the 

set S(0) = {s • R [ Tsx  = 0 for an ideal T implies T z  = 0} of strongly reg- 

ular e l emen t s  of the noetherian ring R has been shown to be equal to the set 

N{C(P) [ P a prime middle annihilator of R} (Theorem 2.1 of [6]). On the other 

hand, if R is a noetherian k-algebra of finite GK-dimension, then 

C'(0) = N{C(P)  [ P  a prime minimal over a left annihilator ideal } 

and 

C(0) = N{C(P) IP  a prime ideal minimal over a right or 

a left annihilator ideal} 

by [11, Th~or~me 4.4]. Note that in a noetherian ring we always have the inclu- 

sions s (0)  c_ c(0) c_ c'(0). 

5.1 PROPOSITION: Let R be a noetherian ring such that 

K = {a e R Ip(aR) = 0} = 0. 

t h e n  S(0) = C(0) = C'(0). 

Proof: Let P be a prime middle annihilator, P = Mid(A, B), A and B ideals 

with A B  ~ O. Let c E C'(0), and assume that c ~ C(P), so xc E P for some z ~ P. 
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Now cB ~_ B as right R-modules, so p(B/cB)  = 0, hence for each b E B there 

exist an element d E C(N) such that bd E cB, whence Axbd C_ AxcB C_ A P B  = O. 

Consequently, p(AxB) = 0, so AxB C_ g = 0, whence x E Mid(A, B) = P. This 

contradiction shows that C'(0) C C(P) for any prime middle annihilator P,  so 

C'(0) _C S(0), which, by the remark above, is all we had to prove, l 

We need the following unpublished result due to T. H. Lenagan, presented 

during the conference "Noetherian rings and rings with polynomial identity", 

held at the University of Durham, July 23-31, 1979. 

5.2 LEMMA: Let R be a noetherian ring with ideals Ix and I2 such that 11 f312 = 

O. If P is a prime middle annihilator of R, then 11 C P or I2 C P, and P/I1 is a 

prime middle annihilator of R /  I1 or P/  I2 is a prime middle annihilator of R /  I2. 

Proof: Let P = Mid(A,B),AB • O. Assume that AB C I~ but AB ~ I2. 

Then A(P + I2)B = AI2B C AB n I2 = O, whence/2 C_ P and 

P/I2 CC_ Mid(A + I2/I2, B + I2/I2) = M/I2, 

say. S i n c e A M B C _ I 2 n A B = 0 ,  M C  M i d ( A , B ) = P ,  s o M = P ,  andP / I2  

is a middle annihilator in R/I2. If AB ~ I 1 for j = 1,2, set 

N,16 = Mid(A + 6 / 6 ,  B + 6 / 6 ) .  

Then A(N1 M N2)B C I1 n I2 = O, so NI n N2 c_ P, hence N1 C_ P or N2 C P. 

Since clearly P _C N1 and P C_ N2, it follows that P = N1 or P = N2. I 

5.3 THEOREM: Let R be a noetherian k-algebra with GK(R) < oo that embeds 

in an artinian ring S such that aS  is fiat. Then each prime middle annihilator 

of R is a prime minimal over a left annihilator ideal. 

Proof." By Theorem 3.5, there exist irreducible right P/-primary ideals 

/1 , /2 , . . . ,  In such that 

I ~ n I ~ n . . . n z . = o  and { P 1 , . . . , P , ) C  minspec(R). 

Furthermore, the ideals I i can be chosen such that whenever X i D I1 for some 

j ,  then X i n Ni#j Ii ~ O. Now let P be a prime middle annihilator. Assume 

first that P is a maximal middle annihilator. If P were not minimal over some 
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left annihilator ideal, then we would have that P N C(Q) ~ 0 for each prime Q in 

the set M of primes that are minimal over a left annihilator ideal. Since the set 

.h4 is finite by [7, Cor. 2.2], this would imply that P N f'){C(Q) I Q E M }  ~ 

by [20, Prop. 2.4]. Since A{C(Q) I Q E M} = c'(0) by [11, Thdor~me 4.4], 

and since ,9(0) = C'(0) by Proposition 5.1, this gives a contradiction. Let now 

P be a non-maximal prime middle annihilator, and let QI be a prime middle 

annihilator, Q1 D p.  By Lemma 5.2, Q1 is a prime middle annihilator over 

some of the ideals Ii, say over I1 , . . .  ,In(l). By Theorem 4.3, each R / I  i has an 

artinian quotient ring, so QI is a minimal prime over each I i by [10, Theorem 

2], hence QI is minimal over [~{Ij ] 1 _< j _< n(1)}. It follows that P does not 

contain N{Ij  [ 1 <_ j _< n(1)}, so by Lemma 5.2, P must be a prime middle 

annihilator over N{Ij  In(X) < j _< n}. If P is not a maximal middle annihilator 

over ~ { I j  [ n(1) < j _< n}, then we continue in this fashion, until eventually we 

get that P does not contain D' = 11 N .. .  N Im for some 1 _< m < n, and that 

P is a maximal middle annihilator over D = Im+l N .. .  N In. By Theorem 3.5, 

RID satisfies the same hypotheses as R, so by the first part of this proof, P/D 

is minimal over some left annihilator ideal in R/D,  say over Y/D = tR/D(X/D). 

Since Y X  C_ D, we have that (Y N D*)X C_ Y X  N D' C_ D N D' = O, so Y N D e C_ 

tR(X)  C_ £R(X/D) = r C_ P. Since P is a prime minimal over Y, and since 

D e ~ P, P is minimal over Y f) D e, hence also minimal over £R(X), thus proving 

the result. 1 

5.4 COaOLLAaY: Let R be a noetherian k-algebra of ~nite GK-dimension that 

has a left fiat artinian embedding. Let 

O = Bo C B1 C . . .  c B i -1  C Bi  C . . .  C Bn  = R 

be any full series of left annihilator ideals, that is, no left annihilator ideal exists 

between Bi-a and Bi, and let Pi = r( Bi/  Bi-a). Then the set { P1,"" ,Pn} is the 

set of all prime middle annihilators of R. 

Proof: This follows immediately from Theorem 5.3 and [7, Theorem 2.1]. II 

The above characterization of the set of prime middle annihilators is by no 

means restricted to noetherian algebras of finite GK-dimension that have a left 
flat embedding in an artinian ring. In fact, the ring U of [5], shown to have 
no embedding in an artinian ring whatsoever, has only two prime middle anni- 
hilators, both of which are actually left annihilator ideals. For this ring U, a 
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homomorphic image of U(5[(2, C)), has precisely two proper nonzero ideals, P 

a n d Q w i t h Q 2  = Q, Q p = p Q  = 0 ,  a n d Q  p P .  Obviously, Q = £ ( P )  and 

P = e ( Q ) .  
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